Thulium: the essentials

Thulium is the least abundant of the earth elements, and is about as rare as silver, gold, or cadmium.

The pure metal has a bright, silvery lustre. It is reasonably stable in air, but the metal must be protected from moisture. The element is silvery-grey, soft, malleable, and ductile, and can be cut with a knife. It is a rare earth metal found in minerals such as monazite.

Table: basic information about and classifications of thulium.

Thulium: historical information

Thulium was discovered by Per Theodore Cleve at 1879 in Sweden. Origin of name: named after ""Thule", an ancient name for Scandinavia.

Per Theodor Cleve of Sweden discovered holmium in 1879 while working on erbia earth (erbium oxide). Thulium oxide (holmia) was present as an impurity in the erbia. The element is named after Thule, the ancient name for Scandinavia.

Thulium: physical properties

 Read more » »

Thulium: orbital properties

 Read more » »

Isolation

Isolation: thulium metal is available commercially so it is not normally necessary to make it in the laboratory, which is just as well as it is difficult to isolate as the pure metal. This is largely because of the way it is found in nature. The lanthanoids are found in nature in a number of minerals. The most important are xenotime, monazite, and bastnaesite. The first two are orthophosphate minerals LnPO4 (Ln deonotes a mixture of all the lanthanoids except promethium which is vanishingly rare) and the third is a fluoride carbonate LnCO3F. Lanthanoids with even atomic numbers are more common. The most comon lanthanoids in these minerals are, in order, cerium, lanthanum, neodymium, and praseodymium. Monazite also contains thorium and ytrrium which makes handling difficult since thorium and its decomposition products are radioactive.

For many purposes it is not particularly necessary to separate the metals, but if separation into individual metals is required, the process is complex. Initially, the metals are extracted as salts from the ores by extraction with sulphuric acid (H2SO4), hydrochloric acid (HCl), and sodium hydroxide (NaOH). Modern purification techniques for these lanthanoid salt mixtures are ingenious and involve selective complexation techniques, solvent extractions, and ion exchange chromatography.

Pure thulium is available through the reduction of TmF3 with calcium metal.

2TmF3 + 3Ca → 2Tm + 3CaF2

This would work for the other calcium halides as well but the product CaF2 is easier to handle under the reaction conditions (heat to 50°C above the melting point of the element in an argon atmosphere). Excess calcium is removed from the reaction mixture under vacuum.

PeriodicTablePen Shop

PeriodicTablePen now has a PeriodicTablePen shop at which you can buy periodic table poster pens, scroll keyrings, elements pens, and more.

Periodic table pens Periodic table Pens of Chemical elements Chemical Elements Pens Periodic Table Scroll Keyrings Periodic Table Scroll

thulium atomic number